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VEGETATION  INDICES  AND  THEIR  CORRELATION 
WITH  SECOND-CROP  CORN  GRAIN  YIELD IN 
MATO GROSSO DO SUL, BRAZIL

Abstract – The emergence of satellites covering new electromagnetic wavelengths 
allowed developing different vegetation indices, enabling the study of their 
correlation with grain yield. In this sense, this study aimed to evaluate the accuracy 
between the mean values of seven vegetation indices and the mean corn grain 
yield in the field by applying linear regression equations. The indices NDVI, 
NDRE, GNDVI, GRNDVI, and PNDVI were used, with changes proposed in the 
equations of the indices GRNDVI and PNDVI, in which the red wavelength was 
replaced by the red edge. The multispectral bands provided by the Sentinel-2A and 
Sentinel-2B imaging instruments were used as a source of data to calculate the 
vegetation indices, while the values recorded by the grain harvester were used for 
the survey of grain yield data. A high correlation was observed between indices 
and grain yield. The replacement of the red wavelength with the red edge improves 
the correlation between vegetation indices and grain yield. Moreover, the indices 
GNDVI and NDVI easily saturate, reaching maximum values and not allowing the 
distinction between sample classes. Therefore, the vegetation indices PRENDVI 
and GRENDVI are recommended for estimating grain yield.

Keywords: Precision agriculture, orbital images, wavelengths.

ÍNDICES DE VEGETAÇÃO E SUA CORRELAÇÃO 
COM  A  PRODUTIVIDADE  DE  GRÃOS  DE  MILHO  
EM  SEGUNDA  SAFRA  NO  MATO  GROSSO  DO  SUL

Resumo - O surgimento de satélites abrangendo novos comprimentos 
eletromagnéticos de onda permitiu o desenvolvimento de diferentes índices de 
vegetação, possibilitando o estudo da correlação destes com a produtividade de 
grãos. Assim, este estudo teve como objetivo avaliar a acurácia entre valores médios 
de sete índices de vegetação e as produtividades médias de grãos da cultura do 
milho em campo, aplicando equações de regressão linear. Os índices utilizados 
foram: NDVI, NDRE, GNDVI, GRNDVI, e PNDVI, sendo propostas alterações 
nas fórmulas dos índices GRNDVI e PNDVI, substituindo o comprimento de 
onda do vermelho pelo do vermelho da borda (Red Edge). Como fonte de dados 
para o cálculo dos índices de vegetação foram utilizadas as bandas multiespectrais 
fornecidas pelos instrumentos imageadores Sentinel-2A e Sentinel-2B, e para 
o levantamento de dados de produtividade de grãos, valores registrados pela 
colhedora de grãos. Observou-se alta correlação entre os índices estudados e a 
produtividade de grãos. Verificou-se que a substituição do comprimento de onda 
vermelho pelo vermelho da borda melhora a correlação entre índices de vegetação 
e a produtividade de grãos, e que os índices GNDVI e NDVI saturam facilmente, 
atingindo valores máximos, não permitindo a distinção entre classes amostrais. 
Assim, os índices de vegetação recomendados para a estimativa da produtividade 
de grãos são o PRENDVI e o GRENDVI.

Palavras-chave: Agricultura de precisão, imagens orbitais, comprimentos de onda.
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In recent decades, corn has reached the 
level of the most produced crop in the world, 
exceeding the 1 billion ton mark, which has left 
behind competing crops such as wheat and rice. 
The crop is still established in the world context 
as a parameter of food security (Contini et al., 
2019).

The survey of the corn production potential 
is essential for each growing season. This process 
is influenced by the spatial variability in the 
field, requiring the adjustment of tools that assist 
in the decision-making. In this sense, remote 
sensing (RS) can be used as an auxiliary tool in 
monitoring plant health.

One of the most efficient and economical 
ways for terrestrial observation is associated 
with the satellite constellation, allowing the 
collection of data for the management of large 
areas. Researchers around the world have 
been looking to improve low-resolution image 
processing techniques, as they are available free 
of charge and provide extensive coverage and 
high temporal resolution. It allows detecting 
parameters related to plant development through 
the spatial and temporal survey of photosynthetic 
activity in the form of vegetation indices (VIs) 
through the reflection of electromagnetic 
radiation (EMR) from the crop canopy under 
analysis (Bertolin et al., 2017). For this, the most 
suitable period for the acquisition of images 
must coincide with the phenological stage of 
maximum crop development. This period is 
represented by the full tasseling in the corn crop, 
that is, the photosynthetic peak of the crop and a 

determining factor for the best time to calculate 
VIs (Bertolin et al., 2017).

Vegetation indices are normalized 
mathematical equations based on EMR and its 
wavelengths: blue, green, red, and near-infrared 
(Bertolin et al., 2017). Ngie and Ahamed (2018) 
stated that the estimation of the photosynthetic 
activity of corn can be estimated using VIs and 
medium-resolution orbital images.

Red edge is a new alternative for 
estimating photosynthetic activity through 
VIs. Its wavelength extends between 680–740 
nanometers, being allocated between the red 
and near-infrared electromagnetic spectra (Cui 
& Rekes, 2018). Kanke et al. (2016) stated that 
the red and red edge wavelengths are strongly 
absorbed by the chlorophyll pigments, while 
the near-infrared is reflected based on the leaf 
structure.

Geostatistics has been the best option in 
precision agriculture (PA) for the analysis of the 
spatial variation of yield from point data obtained 
in the field (Molin et al., 2015). One of the most 
popular interpolators is the inverse distance 
weighted (IDW) (Yamamoto & Landim, 2013).

Thus, this study aimed to evaluate the 
accuracy of seven vegetation indices for 
estimating the mean second-crop corn grain yield 
in the field.

Material and methods

The study was carried out using orbital 
images from a commercial area of 19.25 ha 
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cultivated with the single hybrid corn Formula 
Viptera (Syngenta) under rainfed conditions in 
the second crop and located in Ponta Porã, State 
of Mato Grosso do Sul, Brazil, at coordinates 
22°22′10.17″ S and 55°11′5.04″ W.

The soil is classified as a clay-textured 
dystrophic Red Latosol (Santos et al., 2018), 
with a flat relief and a mean altitude of 435 m.

The regional climate is CWa according to 
the classification of Köppen & Geiger (1936), 
characterized as a humid temperate climate with 
a dry winter and hot summer.

The monthly mean data on precipitation 
and air temperature between January and August 
2018, the year of this study, are shown in Figure 
1.

Corn was sown on February 28, 2018, under 
a crop succession system, with a final population 
of 52,000 plants per hectare. Sowing fertilization 
was carried out in the furrow according to the 

nutritional requirements of the corn crop by 
applying 165 kg ha−1 of the formulation 08–20–
20. Soil chemical and physical characteristics 
were obtained through laboratory analysis in 
the Department of Soil Fertility of the Federal 
University of Grande Dourados and consisted of 
a pH of 5.5, phosphorus of 13.8 mg dm−3, organic 
matter of 35.2 mg dm−3, potassium of 34.8 mg 
dm−3, calcium of 5.7 mg dm−3, magnesium of 
1.2 mg dm−3, aluminum of 0.0 mg dm−3, sand of 
34.2%, clay of 46.6%, and silt of 19.2%.

Orbital images of the Sentinel-2A and 
Sentinel-2B imaging instruments were acquired 
from April 24, 2018, when the corn crop was at 
the phenological stage VT (full tasseling) (Rosa et 
al. 2017). The images were downloaded through 
the United States Geological Survey (USGS) 
website, through the EarthExplorer (2018) page. 
The orbital images shown in Table 1 have a 
spatial resolution of 10 m for the wavelengths 

Figure 1. Mean data of precipitation and air temperature between January and August 2018, obtained from the 
weather station COAMO, Rod. MS 286 – KM 02, Aral Moreira, MS, Brazil.
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blue (band B2), green (band B3), red (band B4), 
and near-infrared (band B8) and 20 m for the red 
edge spectrum electromagnetic (band B5).

Atmospheric corrections were carried out 
in the images using the free software QGIS v. 
2.18.24. The reflectance index of bands B2, B3, 
B4, B8, and B5 were corrected by transforming 
the top of atmosphere reflectance into surface 
reflectance (Pertille et al., 2018). The corrected 
images were transformed into the raster format 
with regular spacing of 10 × 10 m, with each 
cell represented by a specific numerical value 
referring to the radiometric intensity of the 
pixel in nanometers (Molin et al., 2015). The 
VI equations were applied according to the 
recommendations of the respective authors.

Equation 1 (Rouse et al., 1974):
NDVI = (NIR − Red) / (NIR + Red)

where NDVI is the normalized difference 
vegetation index, NIR is the near-infrared 
wavelength, and Red is the red wavelength.

Equation 2 (Fitzgerald et al., 2006):
NDRE = (NIR − Red Edge) / (NIR + Red Edge)

where NDRE is the normalized difference red 
edge index, NIR is the near-infrared wavelength, 
and Red Edge the red edge wavelength.

Equation 3 (Gitelson & Merzlyak, 1998):
GNDVI = (NIR − Green) / (NIR + Green)

where GNDVI is the green normalized difference 
vegetation index, NIR is the near-infrared 
wavelength, and Green is the green wavelength.

Equation 4 (Fu-min et al., 2007):
GRNDVI = NIR − (Green + Red) / NIR + (Green 
+ Red)

where GRNDVI is the green-red normalized 
difference vegetation index, NIR is the near-
infrared wavelength, Green is the green 
wavelength, and Red is the red wavelength.

Equation 5 (Fu-min et al., 2007):

Table 1. Components of the Sentinel-2A and Sentinel-2B imaging instruments.

Resolution (m) Band Band name Wavelength (nm)

10

B2 Blue 490
B3 Green 560
B4 Red 665
B8 Near-infrared 842

20 B5 Red edge 705
Nanometer (nm).
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PNDVI = NIR − (Green + Red + Blue) / NIR + 
(Green + Red + Blue)

where PNDVI is the pan normalized difference 
vegetation index with green, red, and blue, NIR is 
the near-infrared wavelength, Green is the green 
wavelength, Red is the red wavelength, and Blue 
is the blue wavelength.

The GRNDVI and PNDVI equations follow 
the principle of the same sequence exposed by 
Fu-min et al. (2007), but with the replacement of 
the red wavelength with the red edge. In this case, 
their nomenclatures were changed to GRENDVI 
and PRENDVI.

Equation 6 (adapted from Fu-min et al., 2007):
GRENDVI = NIR − (Green + Red Edge) / NIR + 
(Green + Red Edge)

where GRENDVI is the green-red edge normalized 
difference vegetation index, NIR is the near-infrared 
wavelength, Green is the green wavelength, and 
Red Edge the red edge wavelength.

Equation 7 (adapted from Fu-min et al., 2007):
PRENDVI = NIR − (Green + Red Edge + Blue) / 
NIR + (Green + Red Edge + Blue)

where PRENDVI is the pan normalized difference 
vegetation index with green, red edge, and blue, 
NIR is the near-infrared wavelength, Green is 
the green wavelength, Red Edge is the red edge 
wavelength, and Blue is the blue wavelength.

The grain yield data were collected every 

second by a grain harvester with a satellite 
navigation system, panel, and onboard sensors. 
The collected point cloud was treated, and 
the final product consisted of georeferenced 
point data and respective yield. The data 
were georeferenced in the UTM (Universal 
Transverse Mercator) format and the yield was 
expressed in kg ha−1 (Acosta et al., 2018). The 
set of information was manipulated to eliminate 
discrepant data through the standard deviation 
(Barbosa & Maldonado, 2015). Subsequently, 
the point data were interpolated by the inverse 
distance weighted method, generating a file in 
raster format, with each pixel representing local 
georeferenced data on the yield obtained in the 
field. The area was divided into 1925 plots and 
each plot consisted of a 10 × 10-m pixel.

The yield and VI maps were classified 
into three intensities for the distinction between 
sample classes, which are high, medium, and 
low. Maps were generated representing regions 
with different estimates of corn yield based on 
each VI.

The grain yield and VI data were 
compared by correlation analysis and linear 
regression.

Results and discussion

The mean values of VIs were discrepant 
although all images were obtained on the same 
date, allowing the differentiation between those 
with higher (GNDVI and NDVI) and lower 
values (PRENDVI and PNDVI) (Table 2).
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The lowest coefficients of variation were 
also observed for GNDVI, NDVI, and NDRE 
(Table 2), indicating a higher precision of the 
data and, therefore, a lower sampling error.

The box plot with the mean data of VIs 
(Figure 2) indicated that GNDVI and NDVI were 
the most sensitive to physiological changes in the 
crop canopy, with the lowest standard deviation 
of the mean. Despite this, the indices GNDVI 
and NDVI tended to a fast saturation, reaching 
their maximum value in a short period, which 
may compromise the distinction between sample 
classes, while the indices NDRE, GRNDVI, 
PNDVI, GRENDVI, and PRENDVI, which had 
a higher standard deviation of the mean, allowed 
for categorical distinction and demanded more 
time for saturation.

Table 2. Descriptive statistics of vegetation indices and grain yield.

M A V SD SEM CV
PRENDVI 0.21 0.31 0.004 0.06 0.001 31.05
PNDVI 0.28 0.37 0.005 0.07 0.001 26.28
GRENDVI 0.32 0.29 0.004 0.06 0.001 19.00
GRNDVI 0.39 0.35 0.005 0.07 0.001 17.23
NDRE 0.51 0.26 0.003 0.05 0.001 10.40
NDVI 0.62 0.33 0.004 0.06 0.001 10.05
GNDVI 0.67 0.16 0.001 0.03 0.001 4.86
Yield 2917.32 4173.00 960302.515 979.95 22.335 33.59

The replacement of the red wavelength 
with the red edge (NDRE, GRENDVI, and 
PRENDVI) in the VI equations provided better 
correlation results with grain yield (Table 3).

Kanke et al. (2016) observed that the VIs 
used with red edge tended to improve rice yield 
forecasting algorithm and have a higher degree 
of linear relationship with biomass, N absorption, 
and grain yield than indices based on the red 
wavelength. There are also reports of a better 
correlation with the leaf area index (Fu-min et 
al., 2007).

According to Vian et al. (2018), the 
production potential of the corn crop can be 
estimated using NDVI. However, the comparison 
of VIs in Table 4 showed that NDVI is one of the 
indices with the lowest correlation with yield. 

Mean (M) VI in nanometer and yield in kg ha−1; amplitude (A); variance (V); standard deviation (SD); 
standard error of the mean (SEM); coefficient of variation (CV, %); pan normalized difference vegetation 
index with green, red edge, and blue (PRENDVI); pan normalized difference vegetation index with green, 
red, and blue (PNDVI); green-red edge normalized difference vegetation index (GRENDVI); green-red 
normalized difference vegetation index (GRNDVI); normalized difference red edge index (NDRE); 
normalized difference vegetation index (NDVI); green normalized difference vegetation index (GNDVI).



Revista Brasileira de Milho e Sorgo, v.20, e1195, 2021 
DOI: https://doi.org/10.18512/rbms2021v20e1195

Vegetation indices and their correlation with second-crop... 7

Table 3. Correlation matrix between vegetation indices and grain yield.

VI YIELD PRENDVI PNDVI GRENDVI GRNDVI NDRE NDVI
PRENDVI 0.85** – – – – – –
PNDVI 0.84** 0.99** – – – – –
GRENDVI 0.85** 0.99** 0.99** – – – –
GRNDVI 0.84** 0.99* 0.99* 0.99** – – –
NDRE 0.85** 0.99** 0.99** 0.99** 0.99** – –
NDVI 0.83** 0.99** 0.99** 0.99** 0.99** 0.99** –
GNDVI 0.84** 0.99** 0.98** 0.99** 0.99** 0.98** 0.99**

Figure 2. Box plot with mean vegetation index data; nanometers (nm); pan normalized difference vegetation 
index with green, red edge, and blue (PRENDVI); pan normalized difference vegetation index with green, red, 
and blue (PNDVI); green-red edge normalized difference vegetation index (GRENDVI); green-red normalized 
difference vegetation index (GRNDVI); normalized difference red edge index (NDRE); normalized difference 
vegetation index (NDVI); green normalized difference vegetation index (GNDVI).

Pearson’s correlation coefficient ** (p<0.001) using the T-test; grain yield (YIELD); pan normalized 
difference vegetation index with green, red edge, and blue (PRENDVI); pan normalized difference 
vegetation index with green, red, and blue (PNDVI); green-red edge normalized difference vegetation 
index (GRENDVI); green-red normalized difference vegetation index (GRNDVI); normalized difference 
red edge index (NDRE); normalized difference vegetation index (NDVI); green normalized difference 
vegetation index (GNDVI).

Bagheri et al. (2013) studied VIs in corn and 
found correlations through a polynomial equation 
with nitrogen doses, with NDVI also presenting 

the lowest correlation. This fact, associated with 
the data inherent to this experiment, indicates 
that NDVI is not one of the best estimators for 
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Table 4. Mean grain yield obtained by mean indices.

Variable

Equation Yield R2 FDep. Y Ind. X

Yield

PRENDVI Y=12936.75X+234.03 2950.74 0.72 5013.21**
PNDVI Y=11325.65X−215.31 2995.69 0.71 4613.73**

GRENDVI Y=13860.66X−1464.60 2970.81 0.72 4990.26**

GRNDVI Y=11935.14X−1840.99 2813.71 0.70 4494.72**

NDRE Y=15507.86X−5054.74 2854.27 0.71 4841.73**

NDVI Y=12925.97X−5151.08 2863.02 0.68 4176.52**

GNDVI Y=25442.90X−14053.93 2992.81 0.71 4674.04**

corn yield in the field.
The grain yield map and VIs (Figure 3) 

showed that PRENDVI, GRENDVI, PNDVI, and 
GRNDVI are indices that take longer to saturate, 
an effect observed in maps due to the presence 
of wavelengths from 0.02 to 0.5 nm, which are 
low values compared to the indices NDRE, 
NDVI, and GNDVI, which showed wavelengths 
from 0.3 to 0.7 nm. The same observations can 
be found in the linear regression graphs between 
grain yield and VIs (Figure 4). Vian et al. (2018) 
observed that different areas and/or regions of 
corn grain yield can be identified through VIs.

Grain yield has high spatial variability 

(Figure 3), which can be correlated with a 
different crop, such as the distribution and final 
population of plants, and the spatial variability 
of soil attributes. According to Vian et al. (2016), 
the highest corn grain yields depend on the final 
population and the uniform spatial distribution 
of plants, with the final number of ears per area 
being the component that most contributes to 
grain yield. Bernardi et al. (2017) also found a 
correlation between VIs and soil attributes in the 
corn crop, being an indicator of variations used for 
defining management zones and map generation. 
Thus, Figure 3 allowed identifying regions with 
different corn grain yields and VI intensities. The 

Dependent variable (Dep. Y); independent variable (Ind. X); mean yield in kg ha−1 (Yield); coefficient of 
determination (R2); analysis of variance for linear regression (F); ** (p<0.001); pan normalized difference 
vegetation index with green, red edge, and blue (PRENDVI); pan normalized difference vegetation index 
with green, red, and blue (PNDVI); green-red edge normalized difference vegetation index (GRENDVI); 
green-red normalized difference vegetation index (GRNDVI); normalized difference red edge index 
(NDRE); normalized difference vegetation index (NDVI); green normalized difference vegetation index 
(GNDVI).



Revista Brasileira de Milho e Sorgo, v.20, e1195, 2021 
DOI: https://doi.org/10.18512/rbms2021v20e1195

Vegetation indices and their correlation with second-crop... 9

Figure 3. Grain yield maps sampled and estimated from vegetation indices. Grain yield (Yield); nanometers 
(nm); pan normalized difference vegetation index with green, red edge, and blue (PRENDVI); pan normalized 
difference vegetation index with green, red, and blue (PNDVI); green-red edge normalized difference vegetation 
index (GRENDVI); green-red normalized difference vegetation index (GRNDVI); normalized difference red 
edge index (NDRE); normalized difference vegetation index (NDVI); green normalized difference vegetation 
index (GNDVI).
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Figure 4. Linear regression analysis between grain yield and VIs. Pan normalized difference vegetation 
index with green, red edge, and blue (PRENDVI); pan normalized difference vegetation index with green, 
red, and blue (PNDVI); green-red edge normalized difference vegetation index (GRENDVI); green-red 
normalized difference vegetation index (GRNDVI); normalized difference red edge index (NDRE); 
normalized difference vegetation index (NDVI); green normalized difference vegetation index (GNDVI).
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yield map and VIs (Figure 3) were categorized 
into three sample classes, namely, low, medium, 
and high.

The mean values, represented by the 
coefficient of determination (R2) and grain yield, 
were around 70%. Only NDVI presented values 
below 70% (Table 4). Vian et al. (2018) evaluated 
the estimate of corn grain yield using VIs from 
the phenological stages V3 (third pair of leaves) 
to VT (full tasseling) and observed coefficients 
of determination (R2) between 0.63 and 0.83, 
respectively, with increasing correlations as the 
plant grows. Higher VI values indicate higher 
grain yield.

The results of the linear regressions 
indicated that all VIs can be used to estimate 
the mean corn grain yield in the field (Table 4). 
However, some VIs tend to a fast saturation in a 
short period, such as GNDVI and NDVI, making 
it difficult to distinguish between sample classes. 
Therefore, the best indices for estimating the 
mean corn grain yield in the field were PRENDVI 
and GRENDVI.

Conclusions

The indices GNDVI and NDVI showed 
a fast saturation, reaching maximum values 
that compromised the distinction between yield 
classes.

The VIs in which the red edge was 
considered had better estimates and higher 
correlations with the corn grain yield in the field.

The recommended VIs for estimating 

corn grain yield in the field are PRENDVI and 
GRENDVI.
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