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MACHINE LEARNING FOR CROP SCIENCE: 
APPLICATIONS AND PERSPECTIVES IN MAIZE 
BREEDING
Abstract –  Machine learning (ML) has been a major driver in complex data analysis 

in recent decades, allowing the mining of large databases. ML techniques allow the 

creation of computational models for prediction, pattern extraction and recognition, 

considering the premise that the computer acquires learning skills to perform a 

given task without being explicitly programmed for such a purpose. Driven by 

the efficiency of these techniques, several studies have demonstrated their wide 

range of applications and high potential for maize breeding. From the prediction of 

genetic values by omic data to applications of high-throughput phenotyping data, 

ML models have promoted advances in the species comprehension and assisted 

in the development of more effective tools for its breeding, driving expressive 

yield gains. In this context, this work presents the main contributions of ML in 

maize breeding, providing a broad view of the main studies and methodological 

perspectives in the area.

Keywords: Artificial intelligence, deep learning, high-throughput phenotyping, 

omics-based prediction

APRENDIZADO  DE  MÁQUINA  NA  AGRICULTURA:
APLICAÇÕES  E  PERSPECTIVAS  NO 
MELHORAMENTO   DE   MILHO
Resumo - O aprendizado de máquina (AM) tem sido um impulsionador na análise 

de dados complexos nas últimas décadas, permitindo a mineração de amplos 

bancos de dados. Técnicas de AM permitem a criação de modelos computacionais 

para predição, extração e reconhecimento de padrões, considerando a premissa 

de que o computador adquire habilidades de aprendizado para realizar uma dada 

tarefa sem ser explicitamente programado para tal. Impulsionados pela eficiência 

de tais técnicas, diversos estudos têm demonstrado a ampla gama de aplicações 

e elevado potencial no melhoramento de milho. Desde a predição de valores 

genéticos por dados ômicos a aplicações de tecnologias para fenotipagem de 

alto desempenho, modelos de AM vêm promovendo avanços no conhecimento 

da espécie e auxiliando no desenvolvimento de ferramentas mais efetivas 

para seu melhoramento, impulsionando ganhos produtivos expressivos. Nesse 

contexto, neste trabalho são apresentadas as principais contribuições do AM no 

melhoramento de milho, fornecendo uma ampla visão dos principais estudos 

realizados e perspectivas metodológicas na área.

Palavras-chave: Inteligência artificial, aprendizagem profunda, fenotipagem de 

alto rendimento, predição baseada em ômicas
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1. Contextualization

Since the Neolithic revolution, plant breeding 
has gone through different stages (Ramstein et al., 
2018), which Wallace et al. (2018) divide into three 
main periods throughout history. “Breeding 1.0” was 
based on the selection of individuals empirically; 
“Breeding 2.0” was characterized by the use of 
statistical tools (Jiang et al., 2020) to support such 
selection, and “Breeding 3.0” was defined by the use 
of linear regression models to correlate molecular 
markers with quantitative trait loci (QTLs). We are 
currently undergoing a new stage, “Breeding 4.0”, 
which aims to assess biases and high dimensionality 
caused by the large number of markers in order to 
safely verify the effects of each locus (Ramstein et 
al., 2018).

In recent years, the amount of genomic 
data generated has achieved unprecedented levels, 
enhancing larger genetic gains through molecular 
breeding strategies (Dwivedi et al., 2020). This was 
only possible with the development of molecular 
biology techniques and high-throughput genotyping 
(Prohens et al., 2011). In order to coordinate this 
data generation and provide means for deciphering 
complex genetic relationships, high-throughput 
phenotyping approaches have also emerged in 
crop science as an indispensable tool for predictive 
breeding, encompassing image analysis, robotics and 
remote-sensors (Kim et al., 2020).

Maize (Zea mays L.) is one of the most important 
crops in the world, being a source of food, fodder and 
industrial products in tropical and subtropical regions 
(Ranum et al., 2014). In 2019, global production of 
maize was estimated at 1,14 gigatonnes, yielding 
over 7 billion dollars in exports in Brazil alone (FAO, 
2021a, 2021b). Due to this economical relevance, 

maize is probably the best-studied crop to date, 
with large amounts of resources available and for 
which breeding schemes are highly optimized. In the 
interest of the large amount of complex data that has 
been made available with the rapid advancement of 
phenotyping and genotyping technologies, machine 
learning (ML) algorithms have arisen as a promising 
tool in maize research and breeding.

In this context, this article aims to present a 
review of the development of ML-based strategies 
in maize breeding, encompassing strategies for 
associating phenotypic data, dealing with high-
throughput phenotyping approaches and modelling 
genotype-phenotype associations. In order to present 
the main advances in ML breeding strategies, 
summarize the state-of-the-art into such methodologies 
and provide methodological perspectives, this review 
also includes important concepts from computer 
science and data analytics.

2. Machine Learning Concepts and Definitions

Based on the first studies with programmable 
devices, the theoretical foundation of Computer 
Science (CS)  started in the 1950s (Haigh, 2014). 
From a wide range of industrial applications to 
personal use, the development of CS has boosted 
the economy in many ways and created several 
facilities for the storage, management and processing 
of data. Together with such advancements, artificial 
intelligence (AI) formally started in the late 1950s as 
a subfield of CS (Osama et al., 2015), providing more 
ambitious perspectives on systems’ capabilities by 
introducing the idea of autonomous technologies. CS 
is a vast field, including concepts from mathematics 
and engineering; AI encompasses all this theory, 
further supplying a means of automatically solving 
problems based on the idea that systems can think and 



Revista Brasileira de Milho e Sorgo, v.21, e1257, 2022 
DOI: https://doi.org/10.18512/rbms2022vol21e1257

Machine learning for crop science: applications... 3

act rationally.
With the unprecedented increase of data 

generation in the last decades, efficient data analysis 
techniques have been increasingly demanded. All the 
steps required for producing relevant information 
from large datasets are part of a process known as 
knowledge discovery in databases (KDD), which 
encompasses data cleaning, integration, selection, 
transformation, mining and evaluation (Han et al., 
2011). Turning data into knowledge requires data 
mining procedures, which are mainly accomplished 
by ML models; ML is a part of AI focusing on 
automating the process of knowledge extraction from 
data, which is usually performed by the induction 
of models able to identify patterns on data (Faceli 
et al., 2021). For such, ML techniques make use of 
programming techniques from CS and AI allied to 
methods from statistics, optimization and information 
theory, adapted for complex datasets and suitable for 
current hardware systems (Tarca et al., 2007).

Formalizing, let X be a data matrix containing n 
observations, which are described by p qualitative or 
quantitative variables or attributes. The input data may 
be either accompanied or not by a response variable Y, 
containing labels for each one of the n observations. 
These labels can be either quantitative, when a 
regression problem is configured, or qualitative, when 
they are named classes and a classification problem is 
configured instead. Techniques aiming at estimating 
a model for predicting a response variable based on 
information that rely only in the set X are considered 
part of supervised learning (SL). Unlabeled datasets 
are dealt with as an unsupervised learning (UL) task, 
which has a more descriptive nature, identifying 
patterns intrinsic to the dataset which can indicate the 
presence of clusters or associations between variables 
(Van Dijk et al., 2021).

Several mathematical formulations support 
the theory underlying ML methods. Currently, one 
of the most popular ML methods is deep learning 
(DL), a concept introduced in 2006 (Vargas et al., 
2017). The development of deep neural networks 
has dramatically improved the predictive scenario 
for several important applications, including image 
recognition and genomics (Lecun et al., 2015). 
There are DL models for both SL and UL scenarios, 
incorporating an already established theory into high 
dimensional networks. Such methods have gained 
important visibility, mainly for supplying alternatives 
for processing large image databases, such as those 
present in the Imagenet dataset (Deng et al., 2009).

	 In a common SL setting, the definition of 
the most appropriate method for a predictive task 
relies on the evaluation of the produced models by 
validation strategies, i.e., defining random partitions 
for the dataset and creating the training and test 
sets accordingly (Figure 1). The most common data 
partitioning strategies are (Faceli et al., 2021): (i) 
hold-out, where the dataset is split into a percentage 
for training and a left-out percentage for testing; (ii) 
random subsampling where (i) is repeated k times with 
different random seeds for a most reliable evaluation; 
(iii) k-fold cross-validation with the definition of k 
mutually exclusive subsets of data, which are used to 
fit a model k times considering k-1 folds for training 
and 1 left-out fold for testing; (iv) leave-one-out, 
an extreme case of cross-validation where k=n, the 
model is trained n times and at the i-th iteration, the 
model uses n-1 observations for training and predicts 
the label of the i-th left-out observation; and (v) 
bootstrap, which samples data for training multiple 
times with replacement (Han et al., 2011).

Selecting the most appropriate model is not 
simple and depends on the complexity and size of the 
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dataset – which must be compatible with the strengths 
and weaknesses of a given algorithm too (Olson 
et al., 2017). As discrepancies on predictions are 
expected for different ML workflows, it is common 
to test a wide range of techniques, contrasting the 
models’ predictions to the real labels of the test data 
using metrics such as accuracy, precision, recall 
and F-measures, confidence intervals, comparative 
statistics, and receiver operating characteristic 
(ROC) curves (Han et al., 2011). There are several 
strategies for building predictive models (Bishop, 
2006), including: (i) linear models (e.g. discriminant 
analysis, probabilistic generative models, logistic 
regression, and Bayesian approaches); (ii) neural 
networks and Bayesian neural networks; (iii) kernel 
based methods (e.g. support vector machine (SVM) 
and Gaussian processes); (iv) graphical models 
(e.g. Bayesian networks, decision trees, and random 
forests (RFs)); and (v) ensemble strategies as 
bagging, boosting (e.g. AdaBoost, and RFs). All of 

these methods aim at establishing a predictive model 
and have distinct biases regarding how such models 
are represented and searched (Figure 1).

For every ML algorithm, a related theoretical 
background for defining the predictive model exists. 
Therefore, to take advantage of these techniques 
and use them properly, it is necessary to understand 
the inherent model assumptions, functioning 
and capabilities, in order to define the model 
hyperparameters and also suitable data manipulations. 
Another important point regards the exclusion of part 
of the input variables in X when predicting Y. This 
process, known as feature selection (FS), is quite 
important for applications with high dimensional data, 
where there are often redundant, noisy and irrelevant 
features. Through different evaluation criteria, FS 
methods aim at defining an optimal feature subset 
which can supply a more effective input for ML 
model creation (Kumar and Minz, 2014).

Figure 1. Machine learning (ML) workflow and main ML models for predictive tasks.
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3. Maize Breeding and Machine Learning

3.1. Machine Learning Systems in Maize

The results of a search including a few keywords 
(maize, corn, crop, agriculture, machine learning and 
artificial intelligence) on the Scopus and Web of Science 
databases using the bibliometrix R package (Aria and 
Cuccurullo, 2017) are presented in Figure 2. This 
inspection highlights the rapid advancement in the use 
of ML techniques in agricultural research; while works 
in this area have been published since the early 2000s, 
an explosive trend is observed in the last two years. 
Additionally, a large proportion of the publications that 
involve ML and crops also involve maize, indicating 
that this crop is the subject of study of much of the 
research in this field. The analysis also shows that two 
countries with most publications employing ML in 

maize research are also the world’s largest producers 
of this crop – USA and China; in Brazil, the third 
largest maize producer (FAO, 2021a), studies in 
this field are not as abundant, but still noteworthy 
considering the global scenario.

One of the most basic applications of ML 
in agriculture is to predict performance based on 
large phenotypic and environmental datasets, which 
has great potential to assist in the selection and 
recommendation of locally adapted cultivars, as 
well as in the optimization of agricultural practices. 
Such an approach was first taken for maize by Kaul 
et al. (2005), who used artificial neural networks to 
predict yield in Maryland (USA) based on historical 
data of yield and climate; these authors found 
that the ML models resulted in consistently more 
accurate predictions than linear regression. Many 

Figure 2. Growth of studies using machine learning in crop and maize research and distribution of 
publications per country.
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other studies have employed various ML strategies to 
forecast maize yield based on genotype, management 
and climatological information, often achieving 
lower error rates with ML methods than with linear 
regression techniques (Folberth et al., 2020; Chen et 
al., 2021; Correndo et al., 2021; Prasad et al., 2021).

This type of predictive model is set to be 
especially relevant in the current scenario of climate 
change (Wheeler and Von Braun, 2013). Maize is 
already being severely affected by these changes, 
as clearly experienced in the 2012 USA harvest 
(Rippey, 2015). Thus, understanding the impact 
of climate change on the yield crop is a key step to 
enhance its resilience and prevent further losses. 
Considering the realistic scenario of a 2°C increase 
in temperature by 2050, Leng and Hall (2020) used 
ML algorithms to accurately forecast a decrease in 
maize yield of 13.5% by 2050. These results, which 
are backed-up by similar studies employing ML (Fan 
et al, 2020), evidentiate and give cues to the need of a 
directed effort of development of drought- and heat-
tolerant maize cultivars by breeders, as well as of the 
advancement of agricultural techniques.

Yet, the pivotal role of genotype in the yield of 
any crop is undisputable. Since the late 1960s, maize 
yields have drastically increased with the development 
of heterozygous hybrids from single crosses of inbred 
lines, which outperform both parents as a consequence 
of heterosis (Crow et al., 1998). Thus, predicting the 
performance of these hybrids is historically one of the 
most targeted, but also challenging, tasks in maize 
breeding. While several traditional approaches based 
on frequentist statistics were first employed for this 
task (Bernardo, 1996), ML approaches are recently 
being used with the same objective (Khaki et al., 
2020; Sarijaloo et al., 2021).

3.2. Plant Phenotyping

Several measures can be useful for phenotyping 
an individual according to its potential in the field, 
providing an extragenic characterization at different 
scales (Yang et al., 2020). Although such a process 
has been automated, phenotyping thousands of 
plants is still challenging for breeders (Araus et al., 
2018). In this sense, the idea of phenomics has been 
introduced in crop breeding, encompassing the study 
of high-throughput phenotypic data acquired through 
multispectral, hyperspectral, fluorescence, and 
thermal sensors and imagers, which are then processed 
through high-level information technologies (Araus 
et al., 2018; Yang et al., 2020). 

Following the increase in the interest in 
high-throughput phenotyping, ML approaches 
have become popular in phenomics. The dramatic 
boom in data generation coupled with the elevated 
potential of preventing yield losses, identifying 
desirable phenotypes in large fields, and mostly 
obtaining increases in performance through artificial 
selection, have turned the breeding bottleneck to data 
management and processing (Shakoor et al., 2017). 
For maize, the most desirable traits, including yield, 
quality, flowering time, and stress resistance (Jiang 
et al., 2020), have already been phenotyped through 
remote sensing and the related images processed 
through image processing methods coupled with ML 
techniques.

Differently from structured datasets, images 
have no intrinsic features to be used for prediction. 
Although the image pixels contain all the information 
needed for prediction, such information needs to 
be structured, and common approaches focus on 
characterizing an image using descriptors. For 
plant phenomics, such characterization is based on 
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vegetation indices (VIs) (Vergara-Díaz et al., 2016). 
In maize, VIs have been used for characterizing 
several types of images and predicting important 
phenotypes through ML, such as yield and biomass 
(Jeffries et al., 2019; Zhang et al., 2020).

Although very popular in plant breeding, VIs 
do not capture the entire information present on 
the images (Araus et al., 2018); in some scenarios, 
this lack of features can hinder the construction of 
effective models. As an alternative, DL approaches 
with convolutional operations have been suggested 
as the most suitable solution. A convolutional 
neural network (CNN) is a type of neural network 
with several matrix transformations, enabling the 
acquisition of abstract features for a given image. 
Although the concept of DL is related to networks 
with a large number of layers (Lecun et al., 2015), one 
of the most popular DL networks are CNNs, which 
have surpassed the classical methods performance 
for pattern recognition in several areas (Rawat and 
Wang, 2017). CNN kernel filters enable these models 
to automatically learn the domain features instead of 
relying on specific image descriptors (Aloysius and 
Geetha, 2017).

For maize breeding, DL has shown promising 
results for predictive tasks on images, including 
maize segmentation and detection (Liu et al., 2020a), 
kernel and tassel identification and evaluation (Liu et 
al., 2020b; Zhang et al., 2020; Khaki et al., 2021), 
seed analyses (Huang et al., 2019), and disease/
stress prediction (Condori et al., 2017; Jiang et al., 
2019; Sibiya and Sumbwanyambe, 2021). In addition 
to providing ways of measuring maize yield, these 
methods have already been shown to be efficient in 
predicting this trait (Jin et al., 2020; Khaki et al., 
2021).

As the network architecture definition impacts 

CNN performance, different approaches have been 
tested in maize image analyses, including the creation 
of novel architectures (Jin et al., 2020; Zhang et al., 
2020), the use of previously described combinations 
with modifications (Jiang et al., 2019; Sun et al., 
2020), and also attempts on using pre-trained 
architectures  through transfer learning (Condori 
et al., 2017; Huang et al., 2019; Liu et al., 2020b; 
Sibiya and Sumbwanyambe, 2021). Such pre-trained 
networks are usually developed using the ImageNet 
dataset (Deng et al., 2009), which is composed of ca. 
14 million images from several resources, organized 
into over 20,000 categories. Several networks have 
been developed for predicting such labels, including 
VGG (Simonyan and Zisserman, 2014), ResNet (He 
et al., 2016), and GoogLeNet (Szegedy et al., 2014), 
all of which have shown promising results for maize 
image analyses (Condori et al., 2017; Huang et al., 
2019; Jiang et al., 2019; Liu et al., 2020a; Sun et 
al., 2020; Sibiya and Sumbwanyambe, 2021). For 
non-expert users, the implementation of such ML 
structures might be challenging. In this sense, DL 
tools exclusive for maize have also been developed 
(Baweja et al., 2018; Shete et al., 2020; Barman et al., 
2021; Zhou et al., 2021).

3.3. Genomic-based Prediction

One of the main obstacles faced by plant 
breeders is the stagnation in genetic gains (Cooper et 
al., 2020). Over the last few years, the insertion of 
genomics into breeding pipelines has enabled great 
reductions in the duration of cycles (Voss-Fels et al., 
2019). Through marker-assisted selection (MAS) 
techniques, the incorporation of predictive models 
based on genomic information to assess the potential of 
new varieties has brought considerable gains in maize 
breeding (Riedelsheimer et al., 2012). Furthermore, 
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with the employment of genomic selection (GS) 
models, important traits such as productivity and 
resistance to various stresses could be incorporated 
into MAS (Riedelsheimer et al., 2012).

Based on the development of a predictive model 
for a training population containing both genotypic 
and phenotypic information, GS allows the evaluation 
of the field potential of new genotypes for which 
only genotypic information needs to be obtained, 
reducing costs associated with future phenotypic 
field evaluations (Jannink et al., 2010). Although 
having been first proposed in 2001 (Meuwissen et al., 
2001), GS only became popular with the cheapening 
of sequencing technologies. It was first employed in 
maize breeding in 2007 (Bernardo and Yu, 2007) and 
has since been demonstrated to be a valuable tool 
in this area (Riedelsheimer et al., 2012; Môro et al., 
2019).

ML approaches have been explored as an 
alternative to traditional GS models, which are 
mainly based on the use of genomic best linear 
unbiased prediction (GBLUP) methods and 
their variations, eventually including genotype-
environment interactions (Lado et al., 2016). Among 
the most frequently tested algorithms we can mention 
those based on neural networks, which have led to 
the hypothesis that DL tools could further leverage 
the predictive scenario of GS. Due to the power of 
DL for prediction, the usage of such strategy for the 
definition of genomic selection models has been 
widely tested, however with controversial results, 
which vary depending on the species and the trait, and 
also on the DL architecture and the hyperparameter 
optimization methodology employed (Crossa et al., 
2019). In maize breeding, the overall attempts of 
employing DL strategies have been successful or 
presented equiparable performances to traditional 

methodologies, depending on the statistical methods 
used, the trait genetic characteristics and the presence 
of genotype/environment interactions. The most 
used DL strategies have been based on feed-forward 
multilayer perceptron (MLP) architectures (Heslot et 
al., 2012; González-Camacho et al., 2016), however 
with few attempts on other structures, such as deep 
belief networks (Rachmatia et al., 2017), Bayesian 
regularized networks (Pérez-Rodríguez et al., 2020), 
and CNNs (Azodi et al., 2019; Pook et al., 2020).

Other ML approaches tested for maize 
prediction are based on SVM and RF algorithms 
(Heslot et al., 2012; Qiu et al., 2016; Azodi et al., 
2019; Badji et al., 2020; Li et al., 2020), but in general 
the results were equivalent or worse than GBLUP 
based models. Grain yield and moisture and flowering 
time are the traits most frequently targeted by these 
studies (González-Camacho et al., 2016; Heslot et al., 
2012; Azodi et al., 2019; Li et al., 2020), and have 
sometimes been evaluated under the increasingly 
relevant condition of drought stress (Qiu et al., 
2016; Rachmatia et al., 2017). Other characteristics 
addressed include plant and ear height (Azodi et al., 
2019; Li et al., 2020), resistance to pests (Badji et al., 
2020) and diseases (Pérez-Rodríguez et al., 2020), ear 
leaf traits, stalk strength (Li et al., 2020), and grain 
color and starch content (Yin et al., 2020).

One of the main difficulties faced by 
researchers in creating a predictive model for GS lies 
in the high dimensionality caused by the high number 
of markers in relation to the number of genotypes 
available (Ramstein et al., 2018). Most popular GS 
models can handle the number of available markers, 
but alternatives to further increase the predictive 
model capability have been developed. In traditional 
statistical approaches, an alternative has been the 
introduction of biological information in the model, 



Revista Brasileira de Milho e Sorgo, v.21, e1257, 2022 
DOI: https://doi.org/10.18512/rbms2022vol21e1257

Machine learning for crop science: applications... 9

prioritizing certain genomic regions. The incorporation 
of QTL information obtained through linkage mapping 
and genome-wide association studies, for instance, 
has brought beneficial results with the inclusion of 
markers as fixed effects (Rice and Lipka, 2019; Liu et 
al., 2020a,b).

The inclusion of such markers on GS models 
was first tested by Bernardo (2014), who suggested that 
the inclusion of QTLs can be occasionally beneficial. 
For maize, there have been some controversial results 
in inserting such regions as fixed effects. Although 
Sousa et al. (2019) observed accuracy improvements, 
Rice and Lipka (2019) found lower accuracies together 
with an increase in the bias of the predicted breeding 
values, further corroborated by Galli et al. (2020). 
Another tested approach for dealing with such high 
dimensionality and improving the model predictions is 
the selection of a subgroup of markers for creating the 
GS models, which also reduces genotyping costs. In 
addition to statistical models for prioritizing a subset 
of markers to be used for prediction (Qiu et al., 2016), 
ML-based approaches have also been incorporated into 
this subset definition in maize (Ramstein et al., 2018) 
and in other crops as well (Li et al., 2018; Aono et al., 
2020), showing promising results.

Another challenge in maize breeding that can be 
tackled by genomic-based approaches are clustering 
analyses, which have fundamental importance to 
evaluate population genetic structure. These analyses 
are useful for breeding in many aspects, being employed 
in diversity studies and also as a factor for genome-wide 
association mapping models (Pressoir and Berthaud, 
2004a,b; Vigoroux et al., 2008). Various methods can 
be used for such assessments, some of which involve 
ML. López-Cortez et al. (2020), for instance, showed 
that a combination of hierarchical clustering with a 
deep autoencoder-based data preprocessing step was 

the most effective method to assign maize inbred 
lines to clusters.

Furtherly, in outcrossing crops such as maize, 
clustering can be used to classify parental lines into 
heterotic groups that, when inter-crossed, produce 
hybrids with superior performance (Melchinger 
and Gumber, 1998). This classification for parental 
choice has long been performed for maize, initially 
with low-throughput molecular markers and 
traditional distance-based clustering methods (Dias 
et al., 2004). Ornella and Tapia (2010) employed 
ML-based methods for this task using groups with 
diverse heterotic patterns and microsatellite-derived 
attributes; depending on the dataset structure, SVMs 
performed equally well or better than Bayesian and 
simple logistic functions, representing a valuable 
strategy.

4. Perspectives

One of the main concerns of both plant 
and animal breeding programs is how to reach 
elevated genetic gains in a world scenario with 
climate instability, food insecurity and exponential 
population growth. In addition to smart breeding 
designs (Singh et al., 2020), systems with minimal 
environmental impacts are required (Yu and Li, 
2021); this can only be achieved with increases in 
yield production from the existing land through 
novel and efficient breeding techniques (Meng et al., 
2018). In addition to the wise introduction of genetic 
diversity in maize breeding programs (Swarup et al., 
2021), the most significant improvements from the 
last few years in modern breeding have been due to 
high-throughput data generation strategies, mostly 
from genomics and phenomics.

Coupling high-quality phenotypes with 
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a vast number of molecular markers widely 
spread throughout the genome enabled deeper 
characterizations of complex traits; however, 
the complete phenotypic definition is caused by 
a broader cascade of molecular mechanisms, 
including transcripts, proteins, metabolites, and their 
interactions (Muthamilarasan et al., 2019). High-
precision phenotyping methods (Yang et al., 2020), 
feasible omics data acquisition (Pazhamala et al., 
2021), robust AI based methodological analyses 
(Beans, 2020) and genomic editing (Mackelprang 
and Lemaux, 2020) are now being proposed as an 
integrated way of assisting breeding (Figure 3).

The theoretical background of data analytics 
has been gradually incorporated into maize breeding 
best practices, and AI techniques have provided 
a different perspective on how to create breeding 
predictive models; however, little is known on 
what omic layers should be combined for effective 
predictions and what approaches are required for 

that. In maize, there are few attempts on including 
other omics sources than genomics in complex trait 
predictive models, with positive results on increasing 
prediction accuracies (Guo et al., 2016; Kremling 
et al., 2019). Through statistical linear mixed effect 
model methods, gene expression (Guo et al., 2016; 
Kremling et al., 2019) and metabolite quantifications 
(Guo et al., 2016) were coupled with genetic markers 
and could increase the model accuracies through the 
capture of more effects explaining the phenotypic 
variation. In this sense, multi-omics ML predictions 
have been indicated as a promising tool for breeding 
(Tong and Nikoloski, 2021).

There is a great potential of smart strategies for 
reducing the marker data for the future of maize GS 
(Washburn et al., 2020). This subset definition has 
been indicated in the previous section as an effective 
tool for increasing prediction accuracies; however, 
there is still a lack of appropriate methodologies 
for this objective, especially based on multi-omics 

Figure 3. Multi-omics approaches.
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integration. A common approach for elucidating such 
causal loci is by using gene annotations and marker 
associations (Dai et al., 2020), supplying indicatives 
for regulatory regions and molecular associations 
(Mejía-Guerra and Buckler, 2019). More initiatives 
on unraveling maize gene functions through ML 
are expected, such as the inclusion of explainable 
AI methods (Rai, 2020; Linardatos et al., 2021), 
supplying means of deciphering the “black box” 
created by most of these algorithms.

Maize breeding is moving towards a rational 
design of crops, including efforts for characterizing 
the plant architecture conferring a desirable trait. In 
addition to ML methods, systems biology techniques 
have also been incorporated into maize studies (Zhou 
et al., 2020), simulating complex systems through 
network approaches. Despite supplying powerful 
methodologies for assisting the prioritization of causal 
genes (Schaefer et al., 2018), such integrated methods 
can also provide hints on inter-omics associations, 
which is expected to be included in further maize 
prediction systems.

Finally, ML can also be of assistance in another 
gear of Breeding 4.0: gene editing. The application 
of this group of technologies has quickly advanced 
with the development and popularization of Clustered 
Regularly Interspaced Short Palindromic Repeats 
(CRISPR)/CRISPR-associated protein 9 (Cas9) 
systems. This gene editing system has two key 
components: (1) a customized guide RNA (gRNA) 
which directs (2) a Cas9 endonuclease to the target site 
to be edited in the genome (Doudna and Charpentier, 
2014). CRISPR/Cas9 has an extremely wide range of 
applications and is set to be extensively employed in 
plant biotechnology, as many countries are framing 
gene-edited crops under less strict legal regulations 
than first generation genetically modified organisms 

(Gupta et al., 2021).
In addition to the contributions to identify causal 

loci of phenotypes of interest that can be targeted by 
gene editing, ML can also be used in several steps of 
the design of CRISPR/Cas9 systems. Current models 
and softwares can be used to: identify high-efficiency 
target sites for editing (O’brien et al., 2019); predict 
gRNA on-target efficiency (Abadi et al., 2017; Wang 
et al., 2020) and off-target activity (Vinodkumar et 
al., 2021) and to optimize their design (Xue et al., 
2018); and identify potential anti-CRISPR proteins 
(Eitzinger et al., 2020). ML has too been employed to 
identify the outcomes of gene editing, being used to 
detect RNA editing sites (Xiong et al., 2017) and to 
discriminate CRISPR/Cas9-induced mutant rice seeds 
using imaging (Feng et al., 2017). Various CRISPR/
Cas systems have been developed for maize in the 
last few years (Svitashev et al., 2015; Qi et al., 2016), 
but this crop is yet to profit from these numerous 
associated ML tools. While there still much room for 
improvements in these techniques, they are advancing 
rapidly and already allow the algorithmical design of 
CRISPR experiments, which should further optimize 
gene editing efficiency from an experimental and 
economical point of view (O’brien et al., 2021).

As demonstrated throughout this review, ML 
approaches are an efficient tool for maize breeding, 
but the creation of efficient ML systems depends 
on CS expertise, which might transcend breeders’ 
knowledge. In this sense, automated ML initiatives 
offer the possibility for non-specialists to easily 
create end-to-end ML pipelines (He et al., 2021). The 
idea is the estimation of a model from one execution, 
without the need of setting hyperparameters, selecting 
features, preprocessing data and generating the model 
(Weng, 2019). Although this is a recent topic in CS, 
there are already libraries destined for Automated 
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ML (AutoML) (Zimmer et al., 2021), with a growing 
number of researchers trying to increase the efficiency 
of the existing approaches as well (He et al., 2021). 
It is expected that, for the next few years, AutoML 
approaches will facilitate the use and applicability of 
AI based systems in maize breeding.

5. Final Remarks

AI is a vast field of CS, encompassing highly 
efficient algorithms for data analysis, structured in ML 
methods. For maize breeding, such initiatives have 
already been employed in diverse applications, showing 
promising results with virtually endless opportunities 
that respond to the current scientific scenario of 
diverse and massive data generation. From phenotypic 
evaluations to integrated data predictive systems, this 
technological reservoir of methodologies is required 
for advancing to the Breeding 4.0 era. With the advent 
and expansion of genome editing technologies, deeper 
molecular characterization of crops is required and, in 
respect to the current maize scenario, such advance is 
only possible with robust CS-based approaches.
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