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GENOMIC SELECTION AS A TOOL FOR MAIZE 
CULTIVARS DEVELOPMENT

Abstract –  The ability to predict genotypes that have not yet been tested is always 
a target of plant breeders. Over the last twenty years, many studies presented 
genomic selection (GS) as a tool contributing to this goal. Currently, many research 
papers have shown encouraging results in the application of GS. However, there 
are few examples of long-term, successful applications of GS in plant breeding 
programs. Furthermore, for breeders and researchers considering the application 
of GS, there are a series of important considerations on how to adapt a breeding 
program to maximize the benefit of GS, aiming to reduce the costs and maximize 
the genetic gains. Under this perspective, we present a review with a general view 
about applied GS in maize breeding, future perspectives of this technique, and an 
applied study case of a breeding program using GS. We attempt to provide a brief 
review of the literature with recent developments, as well as a discussion involving 
the number of markers required to deploy GS, the different statistical approaches 
to create GS models, the different ways to define training populations, and the 
incorporation of non-additive effects and genotype by environment interaction. 
We end with general recommendations and conclusions about some critical points 
about adopting GS in maize breeding.

Keywords: Predictive accuracy; training set; non-additive effects; genotype-by-
environment interaction.

SELEÇÃO GENÔMICA COMO UMA FERRAMENTA 
PARA O DESENVOLVIMENTO DE CULTIVARES DE 
MILHO

Resumo - A capacidade de predição de genótipos futuros não testados em campo 
sempre foi um objetivo comum para melhoristas. Uma ferramenta que demonstra 
grande potencial nesse âmbito é a seleção genômica ampla (SGA). Embora os 
resultados apresentados na literatura representam fortes evidências em favor de 
incorporar a SGA aos programas de melhoramento de milho, exemplos do mundo 
real da implantação bem-sucedida ainda são escassos. Além disso, ainda existem 
questões sobre como converter ou adaptar um programa de melhoramento para 
maximizar o retorno do investimento na seleção genômica. Assim, apresentamos 
uma revisão com uma visão geral sobre a aplicação da seleção genômica 
em melhoramento de milho, um caso real de utilização em um programa de 
melhoramento privado e perspectivas futuras. Desta forma, exibimos uma breve 
revisão de literatura com desenvolvimentos recentes em SGA, além do número 
de marcas necessários para aplicar uma análise genômica de qualidade, métodos 
estatísticos adotados para criar modelos de SGA, maneiras diferentes de criar 
populações de treinamento, e adição de efeitos não-aditivos e de interação 
genótipos por ambientes nos modelos de predição genômicos. Ao final, destacamos 
alguns pontos importantes sobre a implementação de SGA em programas de 
melhoramento de milho. 

Palavras-chave: Acurácia preditiva, População de treinamento; Efeitos não-
aditivos; Interação genótipos por ambientes
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Genomic-aided predictive methods, 
generally referred to as genomic selection 
or genomic prediction (hereafter GS), have 
constantly evolved since the early work of 
Meuwissen et al. (2001), who proposed the 
concept using simulations. The method’s core 
idea lies in the possibility to predict future, 
unobserved phenotypes by combining high-
density genotypic information and predictive 
modeling. The approach leads to higher genetic 
gains if molecular markers’ prediction is more 
accurate than the conventional phenotypic 
prediction/selection. Furthermore, if the cost 
of genotyping is less than establishing field 
evaluation plots needed for phenotypic selection, 
the approach leads to cost savings. Finally, if 
GS enables faster identification of selection 
candidates, the approach reduces the breeding 
process time. Over the last 20 years, these 
premises have been demonstrated and validated 
for many different species and traits, making 
genomic selection a valuable toolkit in modern 
breeding.

Multiple studies have shown the 
potential of integrating genomic selection into 
maize breeding programs (SUPPLEMENTARY 
MATERIAL - Table 1). The literature has 
explored different prediction methods, different 
breeding designs, different traits, and many 
other ways in which genomic selection can 
complement traditional plant breeding systems 
(Crossa et al., 2017). The emergence of novel 
genotyping technologies has reduced genotyping 
turnaround time while reducing the cost of 
genotyping. The cheaper access to genomic 
information has favored the implementation of 
genomic selection (Galli et al., 2018). In parallel, 

the development of phenotyping technologies 
seeking precise phenotyping is increasing at an 
unprecedented rate. Such technologies bring 
extra power to modeling the link between traits 
and genomic information on crop improvement 
programs (Frietsch-Neto et al., 2021). 

1. Genomic selection applied to maize 
breeding over the past 20 years. 

Although these results encourage breeders 
to use GS in maize breeding programs, real-
world examples of the successful deployment 
of genomic selection are still scarce publicly. 
Furthermore, questions still arise regarding 
how to convert or adapt a breeding program 
to maximize the return on the investment in 
genomic selection. With that in mind, this 
review aims to provide an overview of genomic 
selection applied to maize breeding. Thus, we 
summarize the history and results over the last 
twenty years since the proposed approach, the 
future perspectives and considerations of GS in 
maize breeding, and finally, we presented results 
from a private breeding program that successfully 
deployed GS.

1.1. The initial attempts to predict maize 
grain yield

Predicting future performance, directly 
or indirectly, is the goal of any plant breeder. In 
maize, the prediction of hybrid performance was 
first attempted in the 1930s, as Bernardo (2021) 
reviewed. Jenkins (1934) and Doxtator and 
Johson (1936) demonstrated the ability to predict 
double-cross hybrid performance based on the 
phenotypic performance of their single-cross 
parents (Jenkins, 1934; Doxtator & Johnson, 
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Table 1. Grain yield average of top twenty hybrids. The bold hybrids were selected based on 
genomic selection. 

Hybrid kg/ha† Method
H01 10484 Genomic selection
H02 10294 Conventional approach
H03 9908 Genomic selection
H04 9776 Conventional approach
H05 9726 Conventional approach
H06 9674 Conventional approach
H07 9669 Conventional approach
H08 9653 Genomic selection
H09 9562 Genomic selection
H10 9538 Genomic selection
H11 9505 Genomic selection
H12 9492 Genomic selection
H13 9487 Genomic selection
H14 9404 Genomic selection
H15 9384 Genomic selection
H16 9379 Genomic selection
H17 9362 Conventional approach
H18 9356 Conventional approach
H19 9350 Genomic selection
H20 9332 Conventional approach

†: kilograms per hectare

1936). Since then, maize breeding and quantitative 
genetics have continued to evolve. Over the last 
decades, different procedures were proposed to 
utilize phenotypic data and experimental design 
to estimate and predict breeding values, genetic 
values, specific combining abilities, and general 
combining abilities (Griffing, 1962; Henderson, 
1984). The first application of molecular markers 
to predict a complex trait was proposed by 
Bernardo (1994) before Meuwissen et al. (2001). 

Bernardo (1994) utilized a set of 220 RFLP 
(restriction fragment length polymorphism) 
loci to build a variance-covariance matrix that 
estimated genomic relationship. Using this 
matrix and a mixed model approach, the author 
presented the correlation among predicted and 
observed yield in single crosses equal to 0.80. The 
approach concept was very similar to what was 
later referred to as GBLUP (genomic best linear 
unbiased prediction), proposed by VanRaden 
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(2008) as an alternative GS method.

1.2. What is Genomic Selection

For many decades, plant and animal 
breeders have sought to create approaches 
to predict quantitative traits using molecular 
markers. The primary motivation has been the 
potential increase in selection gain, especially for 
traits with low prediction accuracy or complex 
to evaluate using standard breeding methods. 
Initial approaches that use DNA information 
for breeding, generally named Marker Assisted 
Selection (MAS), relied initially on identifying 
polymorphisms on genes affecting the traits or 
markers linked adjacent to these genes. In 2001, 
Meuwissen et al. (2001) proposed a different 
method to perform MAS and predict quantitative 
traits, referred to as genomic selection. Contrary 
to traditional MAS, which aims to predict traits 
based on knowledge of their specific functional 
polymorphisms, in GS, the phenotype is modeled 
as a function of a large number of DNA markers 
distributed across the genome. In doing so, the 
authors hypothesized that every QTL affecting 
the trait would have its effect captured by at 
least one marker in linkage disequilibrium (LD) 
with it. Since it was proposed, new research 
demonstrated that when all the markers are 
modeled simultaneously, even markers that 
are not in LD with the QTL contribute to the 
trait prediction by capturing average genetic 
relationships among the individuals of the 
breeding population (Zhong et al., 2009; 
Daetwyler et al., 2013). From a statistical point 
of view, the main principle of GS lies in that all 
markers are modeled jointly (Meuwissen et al., 
2001) to estimate genomic estimated breeding 

values (GEBV). In brief, the process develops 
and validates a model by including different 
genetic effects. The next step consists of training 
and validating this model with phenotypic data of 
a specific set of the dataset. Afterward, the model 
is used to predict tested and untested genotypes, 
preferable genotypes related to the ones used 
in training and validating sets during modeling 
(Crossa et al., 2017).

Some studies also have compared GS over 
phenotypic selection to check the importance of 
the genomic approach. A bi-parental population 
study encountered a higher gain by adopting 
GS instead of only phenotypic selection (PS). 
They compared two contrasting environments 
to assess drought tolerance. The drought stress 
environment raised the gain per cycle from 0.27 
(PS) to 0.50 (GS) t/ha/cycle. Under optimal 
conditions, the gain increased from 0.34 to 0.55 
t/ha/cycle when adopting GS (Vivek et al., 2017). 
Moro et al. (2019) investigated the superiority 
of GS over PS when using selection indices 
in maize. The authors concluded that there 
is a high potential of using selection indexes 
with genomic data. Selection in early stages 
permitted to increase the selection intensity and 
to fit two breeding cycles in a year. In 2014, a 
study compared GS and phenotypic BLUP using 
pedigree information and evaluated the influence 
of different breeding cycles on the predictive 
ability. The GS predictions were superior to 
the phenotypic BLUP in all scenarios and traits 
(Albrecht et al., 2014).
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1.3. GS in maize and considerations studies 
in the last two decades. 

Prediction methods
The basic framework for the GS in maize 

was implementing the linear mixed models. 
However, the application of GS typically 
requires mid- to high-density marker panels. 
This procedure creates a challenging situation 
where the number of parameters to be adjusted 
in the model is often more significant than the 
number of phenotypic observations collected, also 
denoted as p>>n. An approach to address these 
limitations is to model the markers as random 
effects and apply regularization, either in the form 
of shrinkage, dimensionality reduction methods, 
or a combination of both (De Los Campos et al., 
2013; Knürr et al., 2013). One of these approaches, 
the ridge regression BLUP (RRBLUP), shrinks the 
estimates of the marker effects using a penalized 
least-square based on the L2 penalty to solve the 
regression problem. In addition, several variations 
of a hierarchical Bayesian linear regression were 
proposed, where the regularization is set up by 
imposing different priors (Gianola, 2013).

A good review of the different methods is 
provided by De Los Campos et al. (2013). After 20 
years of method comparison in different species and 
traits, it is now well accepted that the RRBLUP has 
predictive performance similar to all other methods 
(Resende et al., 2012a). This conclusion was also 
achieved by a recent study in maize that compared 
parametric methods (RRBLUP, elastic net, least 
absolute shrinkage and selector operator, Bayes 
B, Bayes C, and reproducing kernel Hilbert Space 
- RKHS) and non-parametric (random forest and 
support vector machine) methods (Li et al., 2020). 

Our recommendation for breeders evaluating 
GS for the first time in their population is to 
assess the performance of three different 
methods: GBLUP/RR-BLUP, RKHS, and 
BayesB. The BayesB method was superior in a 
few specific cases where the genetic inheritance 
is oligogenic (Resende et al., 2012a; Almeida 
et al., 2016). RKHS was superior in instances 
in which non-additive effects were high. If no 
difference between these methods is perceived, 
the application of GBLUP/RR-BLUP is more 
accessible and less computationally intensive 
than other methods.

Recently, machine learning methods 
have also been applied to genomic selection 
in maize breeding (Montesinos-López et 
al., 2021). Different methods have been 
evaluated, including deep learning and multiple 
perceptron layers approaches (Rachmatia et 
al., 2017; Montesinos-López et al., 2018a, 
2018b;  Zingaretti et al., 2020). Nonetheless, it 
is worth noting that current machine learning 
implementations have not shown minor superior 
to conventional approaches. One hypothesis for 
these results is that the training datasets used 
to calibrate the models are relatively small. 
Future research is yet to demonstrate if higher 
prediction accuracies are possible when larger 
training datasets are available. 

Training set

Genomic prediction models the 
relationship between breeding individuals and 
exploits the linkage disequilibrium between a 
marker and a region of the chromosome that 
controls a specific trait assessed (Heslot et 
al., 2015). However, to achieve effectiveness, 
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three premises should be considered: (1) the use 
of markers with good coverage of the genome; 
(2) high-quality phenotyping in the training 
population; and (3) relationship between the 
individuals from the training population and the 
individuals from the predicted population. 

Before building a prediction model, the 
training population needs to be phenotyped and 
genotyped. It is now well established that the 
model’s prediction accuracy is highly affected 
by the training population used in the model 
calibration (Albrecht et al., 2011; Pszczola et 
al., 2012). Nowadays, establishing the training 
datasets (or calibration sets) that optimize the 
efficiency of GS is one of the critical considerations 
before deploying GS operationally  (Rincent et 
al., 2012). The training set in maize is usually 
composed of inbred lines due to the easiness to 
genotype fully homozygous materials. However, 
deciding what forms the training set will need 
to balance the number of individuals in the 
training set, the relationship of the training set 
with the breeding population where GS will be 
applied, and the number of markers (or marker 
platform) utilized. All of these factors will affect 
the prediction accuracy of the model and the total 
investment required for GS. 

The initial work to investigate the optimum 
training set focused on balancing training size and 
marker panel size (Maenhout et al., 2010; Rincent 
et al., 2012). The simulation provided evidence 
that incorporating disconnected individuals 
into the training set was not beneficial to the 
model. The work also attempted to maximize the 
prediction accuracy by using different training 
populations. The authors evaluated training 
populations that maximized genetic diversity, 

populations that minimized the mean of the 
prediction error variance of the contrast between 
non-phenotyped individuals and the mean of the 
panel, and populations that maximized the mean 
of the coefficient of determination of the contrast 
between non-phenotyped individuals and the 
mean of the panel. The optimization approaches 
tested superior to randomly selected training 
populations, highlighting the opportunity to 
increase prediction accuracy during the planning 
phase (deciding which individuals will get 
genotyped). Similar results with slightly different 
optimization schemes were later demonstrated 
by Akdemir et al. (2015). The importance of 
the relationship between the training set and the 
population where GS will be deployed was also 
shown with real maize data (Windhausen et al., 
2012; Mastrodomenico et al., 2019). Both studies 
obtained low predictive accuracy due to the low 
genetic relationship between populations. In 
contrast, Li et al. (2021) evaluated the inclusion 
of related individuals into the training population 
and found a significant increase in the predictive 
accuracy.

Another important consideration when 
deciding the training population is how to 
leverage multi-year experiments to calibrate the 
GS model. This parameter is particularly relevant 
once GS has been partially implemented while 
phenotypic data is still collected on individuals 
genotyped. Hence, the breeder has the opportunity 
to decide how to combine the phenotypic data 
collected over multiple years into a single 
prediction model. An eight-year study developed 
in a maize breeding program concluded that 
increasing the training population size does not 
necessarily raise the predictive accuracy. The 
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authors identified it as an obstacle to predicting 
specific cycles due to the introgression of new 
sources of diversity into the program. Thus, the 
best predictive performance was obtained using 
two previous cycles to predict the following (Dias 
et al., 2020) rather than utilizing all the available 
data. Wang et al. (2020) also studied the use of 
different cycles in the training population of the 
GS models and reached similar results. These 
studies stand out the importance of size and 
structure in a training population and highlight 
how this step is essential for GS success.

2. Optimization of genomic selection in maize 
breeding

2.1. Additive and non-additive effects in 
genomic selection

Total genetic effects can be partitioned 
into additive and non-additive, and the non-
additive effect can be further partitioned into 
dominance end epistasis (Falconer & Mackay, 
1996). Genomic selection models were initially 
modeled to predict the additive effect, which 
was accomplished by parameterizing the DNA 
markers with the additive dosage model (e.g., 0, 
1, and 2). A natural expansion of these models 
was incorporating non-additive effects as 
genomic relationship matrices that capture non-
additive effects (Vitezica et al., 2013; Muñoz et 
al., 2014) or direct marker estimates (Wellmann 
& Bennewitz, 2012). 

Maize breeding has traditionally 
benefitted from non-additive variance and 
designed the breeding pipeline to capitalize on 
hybrid vigor and specific combining abilities. 
Hence, GS models that predicted hybrid 

yield performance were more accurate when 
dominance was included in the model (Alves et 
al., 2019). Similar results were reported by Dias 
et al. (2020), where the predictive ability for grain 
yield increased by over 15% in the model that 
included additive and dominance effects (A + D). 
However, it is worth noting that A + D models did 
not increase the prediction accuracy of ear height 
and plant height (Alves et al., 2019), providing 
evidence of a more negligible contribution of 
non-additive effects to those traits. Implementing 
an RKHS model for hybrid prediction, Li et al. 
(2020) demonstrated that A + D models were 
more efficient when relatively high non-additive 
variance. However, for the eleven traits assessed 
in the study, improvement in prediction was 
observed only for grain yield. Ferrão et al. (2020) 
also showed an increase of 30% in the predictive 
accuracy by adopting the A + D model for grain 
yield, whereas no increment was observed for 
grain moisture. In summary, when GS is being 
explored for a new species, population or trait, 
the general recommendation is to evaluate the 
predictive ability of models that include A + 
D. Including dominance effects is advised in 
predictions of maize grain yield. However, for 
traits where prediction accuracies are equivalent 
to the additive models, the additive model would 
then be the easiest way to deploy GS, and no 
extra complexity is required in the model. 

2.2. Optimization of genomic prediction by 
including G × E interaction effect

The genotype-by-environment (G × 
E) interaction is an effect well known to any 
breeder, increasing the complexity of predicting 
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variety performance in maize breeding programs. 
Similarly, the G × E interaction also affects the 
predictive ability of genomic selection models 
because the “ground-truth” phenotype used 
to calibrate the model in a given environment 
will not have the same magnitude or ranking in 
another environment under G × E. Hence, the 
resulting GS model will not yield high predictive 
accuracies. This point was well demonstrated 
in clonal plant populations planted in different 
environments (Resende et al., 2012b). In 
maize, GS models that explicitly included G × 
E interaction as a random effect in a GBLUP 
model increased the predictive ability of hybrid 
performance (Acosta-Pech et al., 2017; Dias et 
al., 2018; Rogers et al., 2021). Another study 
modeling Zn concentration for maize production 
also indicated an improvement in the predictive 
models when they included the G × E interaction 
effect (Mageto et al., 2020). 

Multi-environment GS models have 
also been evaluated jointly with multi-trait 
approaches. Multi-trait models are particularly 
relevant for traits with many missing data or lack 
of precision in the phenotyping. Using such an 
approach, Oliveira et al. (2020) observed the 
superiority of the multi-trait models and similar 
accuracies in a single environment and multi-
environment models. However, while the overall 
estimates of prediction accuracy were similar, 
multi-environment GS models improved the 
prediction accuracy for new, untested hybrids. 
Genotype-by-environment models have also 
been evaluated together with the incorporation of 
dominance effects. In a joint GS analysis of test-
cross hybrids that included non-additive effects 
and  G × E interactions, dominance effects were 

relevant for grain yield, days to silking, and plant 
height. In the case of G × E interaction, the effect 
was critical only for grain yield (Ramstein et al., 
2020). Ferrão et al. (2020) analyzed the inclusion 
of the G × E interaction effect and concluded 
that both dominance and G × E interaction 
effects contributed to the improvement of the 
genomic prediction. In addition, Rogers et al. 
(2021) presented evidence that the inclusion of 
dominance improved the prediction accuracy 
by 7-10% for grain yield compared with models 
accounting for only additive effects when the 
models accounted for the G × E interaction 
effect. These and other results show that G × E 
interaction should be included in the calibration 
and deployment of GS models. 

2.3. Genomic selection applied to double 
haploid selection and assessment

Double haploid production is currently the 
basis of field corn breeding programs. In summary, 
the creation of haploids plants is induced, and 
haploid kernels are identified, typically by a 
color marker. The haploid plants have their 
chromosome doubled, and the resulting plant is 
a double haploid, diploid, inbred line (Geiger & 
Gordillo, 2009). The double haploid system is 
an excellent complement to GS (Messina et al., 
2018) since the availability of genotypic data 
in inbred lines enables the creation of in-silico 
hybrids for every combination of crosses without 
the need to genotype each segregating individual 
independently. This process vastly reduces 
the overall cost of deploying GS. The second 
application of interest in the interface of DH 
production and GS is the use of prediction models 
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to select the inducers with superior performance 
(adaptation to target environment and induction 
rate). Almeida et al. (2020) considered the haploid 
induction rate a trait and calibrated a GS model. 
Those authors observed high predictive abilities 
and indicated that GS could be successfully 
applied for inducer development, accelerating 
and increasing genetic gain in a costly and time-
consuming trait to screen.

2.4. Genomic selection applied to public 
breeding programs 

In general, modern public field corn 
breeding programs are heavily focused on pre-
breeding efforts. While some programs have 
successfully developed inbred lines for niche 
markets or specific environments, a significant 
component of public breeding research revolves 
around identifying and characterizing germplasm 
with unique traits or adaptation profiles. Genomic 
selection can accelerate the targeted incorporation 
of landraces and other germplasm into an inbred/
hybrid development pipeline, as demonstrated by 
simulation (Gorjanc et al., 2016) and using data 
from diverse accessions (Yu et al., 2016, 2020). 
Furthermore, recent work investigated introducing 
new lines, from a public germplasm bank, into a 
private program germplasm bank with elite lines 
(Allier et al., 2020), using GS as the proposed 
approach. The authors found considerably high 
predictive abilities and concluded that GS could 
be helpful as a pre-breeding approach to introduce 
targeted genetic diversity and define the resources 
that can further improve elite lines. Hence, we 
note that in addition to increasing genetic gains 
in inbred development breeding pipelines, similar 

success is likely to be obtained in developing 
elite populations or pre-breeding efforts with 
exotic germplasm. 

2.5. Insights from a private commercial 
breeding program

The application of GS can fit in 
commercial breeding programs of any size, and 
its deployment will depend on many factors, 
including the resources available. Herein we 
describe a case of GS implementation in a mid-
size breeding program owned by Helix Sementes 
e Mudas Ltda (owner of the commercial brands 
Sementes Biomatrix e Santa Helena Sementes) 
in Brazil. Helix started incorporating GS 
into its breeding pipeline in 2015. The initial 
strategy was to run a pilot project to test the 
viability of implementing GS by focusing on 
target environments relevant to the second 
maize cropping season in Brazil, also known 
as “safrinha.” For that, 128 inbred lines were 
genotyped with approximately 616,000 SNP 
markers. At the same time, a training population 
was developed by characterizing 450 single-
cross hybrids across five locations within the 
targeted mega-environment.

Grain yield prediction modeling was 
developed for all possible combinations among 
the 128 lines, including only additive effects. 
The first 274 hybrids with the highest yield 
predicted performances were selected for field 
testing in the next cycle. Additionally, 1360 
hybrids developed using the traditional breeding 
pipeline were added to the trials. Hence, 1634 
hybrids were tested in the pilot project, in which 
17% came from genomic prediction and 83% 
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from the conventional approach (Figure 1). The 
field experiments were planted and evaluated 
at the same environments for developing the 
training population, except that one location 
was lost due to climate constraints. Grain yield 
was measured and adjusted for 13% moisture. 
Average grain yield was estimated, and a 1.5% 
selection threshold was applied, resulting in the 
list of selected hybrids below sorted by grain 
yield. Interestingly, the genomic prediction 
approach generated 12 out of the 20 hybrids; in 
other words, 60% of the chosen hybrids with the 
highest yield performance (Table 1). These results 
initially suggested a potential to incorporate GS 
into the conventional breeding pipeline adopted 
by the company.

Using the same methodology described 

Figure 1. Total number of tested and selected hybrids (predicted x non-predicted).

before, we investigated the effects of adding 
kinship information into the modeling estimation 
and materials selection in the next cycle. A set 
of 52 hybrids from the training population was 
selected by predicting the most productive 
hybrids in grain yield using GBLUP (Figure 2 
and Table 2). In parallel, an independent set of 
138 combinations were selected based solely 
on BLUP estimations (no kinship information). 
These groups totalized 190 hybrids planted and 
evaluated for grain yield in the next cycle at 
the same sites described previously, including 
two more locations, totalizing seven sites. 
The phenotypic average grain yield across 
all locations showed that 13 out of the 20 best 
performing hybrids came from the set of hybrids 
derived from the GBLUP approach. This result 

1360 hybrids
(83%)

8 hybrids (40%)
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Table 2. Average grain yield of top twenty hybrids. The bold hybrids were selected based on 
genomic selection.

Hybrid kg/ha † Method
H01 9939 GBLUP 
H02 9833 BLUP
H03 9789 BLUP
H04 9778 BLUP
H05 9721 GBLUP 
H06 9718 GBLUP 
H07 9534 GBLUP 
H08 9502 BLUP
H09 9500 GBLUP 
H10 9483 BLUP
H11 9452 GBLUP 
H12 9445 GBLUP 
H13 9430 GBLUP 
H14 9428 GBLUP 
H15 9408 GBLUP 
H16 9405 GBLUP 
H17 9375 GBLUP 
H18 9328 BLUP
H19 9316 GBLUP 
H20 9311 BLUP

†: kilograms per hectare. BLUP: Best Linear Unbiased Prediction. GBLUP: Best Linear Unbiased Prediction.

Figure 2. Total number of tested and selected hybrids. BLUP: Best Linear Unbiased Prediction; 
GBLUP: Genomic Best Linear Unbiased Prediction.

138 hybrids
(73%)

7 hybrids (35%)
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demonstrated that adding kinship information 
improved the prediction and selection efficiency.

Lastly, a hypothesis on whether increasing 
the number of molecular markers (SNPs) in the 
calibration modeling phase improves the predictive 
ability was tested for grain yield, grain moisture, 
plant height, and ear height. As demonstrated in 
Figure 3, there was no evident indication that 
increasing the numbers of markers altered the 
predictive ability for all traits evaluated. It is crucial 
to highlight that the minimum number of markers, 
in this case, was 10,000 markers increasing to up 
to 550,000 markers.

The results from this pilot project 
corroborated what the literature had suggested 
since the evolution of genomic selection in maize 
breeding. A good indication is that genomic 
prediction is a helpful tool in maize breeding. 
Unfortunately, our discussion and published data 
are limited due to companies’ restrictions on sharing 
data and other relevant information. Nevertheless, 
GS was fully incorporated into the company’s 
breeding pipeline since the development of this 
pilot project with some tweaks and improvements. 
Interestingly, three hybrids selected via genomic 
selection in this pilot study have recently reached 
the commercial phase with decent levels of 
adoption so far. This result reinforces GS’s 
effectiveness as a tool to any breeding program.

3. Ongoing and future research 
developments

3.1. Integration of environmental 
covariates into genomic selection models

After 20 years since its inception, the 
field of GS is now relatively well established, 
and its potential has been demonstrated in 
many different crops and populations. Here we 
provide additional evidence in a commercial 
breeding program of how GS was utilized and 
selections moved forward until the commercial 
phase. In the following two sections, we provide 
a brief discussion of two recently emerging 
research fields proposed to further advance 
the application of genomic data into breeding 
programs. The first one uses environmental 
covariates to improve the predictive ability in 
untested environments. The use of genomic data 
combined with high-resolution environmental 
characterization (envirotyping) brings novel 
opportunities to i) utilize high-dimensional GS 
to predict phenotypes of non-tested genotypes 
in novel environments for which environmental 
characterization is available or predicted; 
ii) integrate genomics, environmental and 
phenotypic variables measured in distinct 
stages of crop development, and physiological 
understanding of crop growth processes to 
model a broad spectrum of interactions between 
genotypes and environments (Technow et al., 
2015; Cooper et al., 2016); iii) integrate models 
using imagery technology associated with 
high-throughput phenotyping and genomic 
information in early testing generations to 
accelerate genetic gain.
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Envirotyping describes, in detail, 
environmental factors that affect the development 
and productivity of crops in multi-environment 
trials and groups of breeding target environments 
(Cooper et al., 2016; Xu, 2016). On the other 
hand, growth models or crop growth models 
use quantitative descriptors of eco-physiological 
process, soil chemistry, agricultural climatology, 
crop management, and areas related to predicting 
crop growth, crop development, and crop yield of 
plant species in a given environment (Hodson & 
White, 2010). Because of that, they can explain 
the impact of G x E interation and certain types 
of non-additive effects on the expression of a 
phenotype.

Genomic selection models grounded 
on reaction norms using G x E interation and 
environmental covariables (Jarquín et al., 2014) 
can increase the prediction accuracy by 7 to 20% 
depending on the species and trait studied (Crossa 
et al., 2017; Pérez-Rodríguez et al., 2017). Also, 
it allows the prediction of G x E interation in 
non-tested environments. Similarly, by adding 
plant stress covariables extracted from growth 
models using a large group of environmental 
variables, Heslot et al. (2014) demonstrated that 
the prediction accuracy of yield performance of 
wheat lines at non-tested environments increased 
by 11%, on average. In maize, a study by Technow 
et al. (2015) has shown a considerable increase 
in the capacity of predicting grain yield when 
using crop growth models and environmental 
variables simultaneously in the prediction 
process. For instance, the integration of growth 
models and GS in comparison with a GBLUP 
model increased (on average) the predictive 
accuracy by 32% when the estimated predictions 

were performed in the same environment and 
up to 500% when predictions were performed 
for non-tested sites. Although these results are 
exciting, extensive research is still needed to 
evaluate the behavior of such integrative GS 
models in different traits, genetic backgrounds, 
agroecosystems, and breeding pipelines. We 
expect future developments to validate further 
and improve these models, enabling the selection 
of high-performance genotypes that have not yet 
been tested in novel target environments.

3.2. Using simulation to optimize breeding 
programs accounting for GS

The field of computer simulation is a 
second field that has observed a resurgence in 
research interest, and that can significantly benefit 
the application of GS into specific breeding 
pipelines. In general, the size of maize breeding 
programs has increased in the last decades, and 
an extraordinary number of genotypes have been 
tested, requiring labor, field, and time resources. 
As the cost of these endeavors also increases, the 
interest and demand in precisely optimizing and 
maximizing genetic gain also increase. Because 
of that, a field that has re-emerged in the last 
few years is the use of computer simulation as 
an inexpensive, flexible, rapid, and reliable 
alternative to optimize breeding programs 
(Batista et al., 2021).

Also known as in silico experiments, 
simulation studies can design new breeding 
designs, calculate the return on the investment, 
or investigate how breeder’s choices affect the 
breeder’s equation (Gaynor et al., 2017). The 
advantages of this approach are that it can evaluate 
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larger sets of these studied factors (e.g., population 
size, replications, environments) (Andorf et al., 
2019), as well as optimize the breeding program 
design by testing the genotypes` matting/crosses, 
and their outputs (Faux et al., 2016). The long-
term performance of a specific strategy (pedigree 
or genomic relationship information) adopted 
in the early stages of the breeding pipeline 
was estimated using this approach (Gorjanc et 
al., 2018; Cowling et al., 2020). However, the 
number of questions that can be asked and the 
different parameters in a breeding program that 
can be optimized are extensive. Hence, we expect 
that more research in this field will continue over 
the next few years, and outcomes from computer 

simulation will likely help shape changes in 
breeding programs that optimize the process. 

Conclusions

In conclusion, the field of genomic 
selection in the last twenty years has significantly 
expanded. GS as a tool is now well established, 
validated, and has been commercially deployed 
in many breeding programs of maize and other 
plant and animal species. In this review, our goal 
was to demonstrate preliminary results of such an 
initiative in a commercial breeding program and 
highlight key factors that need to be considered 
when applying GS. We also expect the field of 

   
 

   
 

 

Figure 3. Predictive accuracy versus the number of makers for the traits grain yield, grain 

moisture, plant height, and ear height. 
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predictive breeding to continue to evolve and 
expand as decision tools that complement field 
evaluations. 
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